Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is mainly sustained by reentrant circuits and rapid ectopic activity. In the present study, we performed computer simulations using a 3D human atrial model including fibre orientation, electrophysiological heterogeneities and tissue anisotropy. Membrane kinetics were described as in the human atrial action potential model by Maleckar et al., including AF-induced ionic remodeling. The impact of ionic changes on reentrant activity was investigated by characterizing arrhythmia stability, rotor dynamics and dominant frequency (DF). Our simulations show that reentrant circuits tend to organize around the pulmonary veins and the right atrial appendage. Simulated IK1 and I Na blocks lead to slower DF in the whole atria, expanded wave meandering and reduction of secondary wavelets. INaK block slightly reduces DF and does not notably change the propagation pattern. Regularity and coupling indices of electrograms are usually higher in the right atrium than in the left atrium, entailing a higher likelihood of arrhythmia generation in the latter, as occurs in AF patients. © 2012 CCAL.


Conference paper

Publication Date





137 - 140