Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways.

Original publication

DOI

10.1016/j.neuroimage.2013.02.046

Type

Journal article

Journal

Neuroimage

Publication Date

15/07/2013

Volume

75

Pages

177 - 186

Keywords

Animals, Autoradiography, Brain, Brain Chemistry, Chromatography, High Pressure Liquid, Fenfluramine, Fluorobenzenes, Image Processing, Computer-Assisted, Inflammation, Laser-Doppler Flowmetry, Magnetic Resonance Imaging, Male, Microdialysis, Piperidines, Rats, Rats, Sprague-Dawley, Serotonin, Serotonin Antagonists, Serotonin Uptake Inhibitors