Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The twin-arginine translocase (Tat) carries out the remarkable process of translocating fully folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Tat is required for bacterial pathogenesis and for photosynthesis in plants. TatA, the protein-translocating element of the Tat system, is a small transmembrane protein that assembles into ring-like oligomers of variable size. We have determined a structural model of the Escherichia coli TatA complex in detergent solution by NMR. TatA assembly is mediated entirely by the transmembrane helix. The amphipathic helix extends outwards from the ring of transmembrane helices, permitting assembly of complexes with variable subunit numbers. Transmembrane residue Gln8 points inward, resulting in a short hydrophobic pore in the center of the complex. Simulations of the TatA complex in lipid bilayers indicate that the short transmembrane domain distorts the membrane. This finding suggests that TatA facilitates protein transport by sensitizing the membrane to transient rupture.

Original publication

DOI

10.1073/pnas.1219486110

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

19/03/2013

Volume

110

Pages

E1092 - E1101

Keywords

Biological Transport, Active, Cell Membrane, Escherichia coli, Escherichia coli Proteins, Lipid Bilayers, Membrane Transport Proteins, Models, Molecular, Plants, Protein Multimerization, Protein Structure, Quaternary, Thylakoids