Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power deposition was kept within regulatory limits by use of the power independent of number of slices (PINS) technique. A high in-plane spatial resolution of 1.5 mm was obtained, while image distortion was ameliorated by the use of in-plane parallel imaging techniques. Data from six subjects were obtained with a measurement time of just over 15 min per subject. A group level independent component (IC) analysis revealed 24 non-artefactual resting state networks, including those commonly found in standard acquisitions, as well as plausible networks for a broad range of regions. Signal was measured from regions commonly rendered inaccessible due to signal voids in gradient echo acquisitions. Dual regression was used to obtain spatial IC maps at the single subject level revealing exquisite localisation to grey matter that is consistent with a high degree of T(2)-weighting in the acquisition sequence. This technique hence holds great promise for both resting state and activation studies at 7 T.

Original publication

DOI

10.1016/j.neuroimage.2012.05.080

Type

Journal article

Journal

Neuroimage

Publication Date

09/2012

Volume

62

Pages

1939 - 1946

Keywords

Brain, Brain Mapping, Echo-Planar Imaging, Female, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male