Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The dominant paradigm for the evolution of mutator alleles in bacterial populations is that they spread by indirect selection for linked beneficial mutations when bacteria are poorly adapted. In this paper, we challenge the ubiquity of this paradigm by demonstrating that a clinically important stressor, hydrogen peroxide, generates direct selection for an elevated mutation rate in the pathogenic bacterium Pseudomonas aeruginosa as a consequence of a trade-off between the fidelity of DNA repair and hydrogen peroxide resistance. We demonstrate that the biochemical mechanism underlying this trade-off in the case of mutS is the elevated secretion of catalase by the mutator strain. Our results provide, to our knowledge, the first experimental evidence that direct selection can favour mutator alleles in bacterial populations, and pave the way for future studies to understand how mutation and DNA repair are linked to stress responses and how this affects the evolution of bacterial mutation rates.

Original publication

DOI

10.1098/rspb.2013.0007

Type

Journal article

Journal

Proc Biol Sci

Publication Date

22/04/2013

Volume

280

Keywords

DNA Repair, DNA, Bacterial, Drug Resistance, Bacterial, Evolution, Molecular, Hydrogen Peroxide, Mutation, Mutation Rate, Oxidative Stress, Pseudomonas aeruginosa