Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To provide a comparative framework to understand the evolution of auxin regulation in vascular plants, the effect of perturbed auxin homeostasis was examined in the lycophyte Selaginella kraussiana. Polar auxin transport was measured by tracing tritiated IAA in excised shoots. Shoots were cultured in the presence of auxin efflux inhibitors and exogenous auxin, and developmental abnormalities were documented. Auxin transport in Selaginella shoots is exclusively basipetal, as in angiosperms. Perturbed auxin transport results in the loss of meristem maintenance and abnormal shoot architecture. Dichotomous root branching in Selaginella appears to be regulated by an antagonistic relationship between auxin and cytokinin. The results suggest that basipetal polar auxin transport occurred in the common ancestor of lycophytes and euphyllophytes. Although the mechanisms of auxin transport appear to be conserved across all vascular plants, distinct auxin responses govern shoot growth and development in lycophytes and euphyllophytes.

Original publication

DOI

10.1111/nph.12183

Type

Journal article

Journal

New Phytol

Publication Date

04/2013

Volume

198

Pages

419 - 428

Keywords

Biological Transport, Body Patterning, Homeostasis, Indoleacetic Acids, Meristem, Phthalimides, Plant Leaves, Plant Roots, Plant Shoots, Selaginellaceae