Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recently, simple neural network models have been used to explain the evolution of important phenomena in animal signalling, such as extravagant ornamentation and symmetrical signals, as responses to inevitable 'hidden preferences' of recognition systems. We argue that these very simple models may be misleading because they may not behave in important ways like the recognition systems of real animals and so cannot justify their claim to demonstrate general principles of perception in a signalling context. We show that the way in which these simple models respond to exaggerated signals may not be, as is claimed, a close parallel to the phenomena of peak shift or supernormal responses. We also argue that the preference for symmetrical patterns shown by the models is unlikely to reflect the way computationally that real animals solve problems of pattern invariance and may be an artefact of the particular way the models have been set up. Whereas more sophisticated neural net models do capture known properties of real visual systems and are consequently of great use in understanding perception, the same cannot be said of very simple one-dimensional models with small numbers of units and connections. Given the far reaching explanatory claims made of these simpler models their limitations should be more widely recognized.

Original publication

DOI

10.1098/rspb.1995.0159

Type

Journal article

Journal

Proc Biol Sci

Publication Date

22/09/1995

Volume

261

Pages

357 - 360

Keywords

Animal Communication, Animals, Artifacts, Biological Evolution, Brain, Female, Male, Models, Neurological, Models, Psychological, Nerve Net, Problem Solving