Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To better understand how silkmoth cocoons maintain the correct internal moisture levels for successful pupation, we examined cocoons from the long-domesticated mulberry silkmoth Bombyx mori as well as from two wild silkmoth species, Antheraea pernyi and Philosamia cynthia ricini. We determined fluid-independent values for the porosity, tortuosity and permeability of the inner and outer surfaces of cocoons. Permeabilities were low and, with the exception of A. pernyi cocoons, inner surfaces were less permeable than outer surfaces. B. mori cocoons exhibited the highest permeability overall, but only at the outer surface, while A. pernyi cocoons appeared to show different patterns from the other species tested. We discuss our findings in light of the ecophysiology of the various species and propose a 'tortuous path' model to help explain our results. The model describes how the structure of the inner and outer layers of the cocoon allows it to function as both a humidity trap and a waterproof barrier, providing optimum conditions for the successful development of the pupa.

Original publication




Journal article


Comp Biochem Physiol A Mol Integr Physiol

Publication Date





645 - 652


Animals, Bombyx, Humidity, Moths, Permeability, Porosity, Pupa