Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article is a comparative study of white matter projections from ventral prefrontal cortex (vPFC) between human and macaque brains. We test whether the organizational rules that vPFC connections follow in macaques are preserved in humans. These rules concern the trajectories of some of the white matter projections from vPFC and how the position of regions in the vPFC dictate the trajectories of their projections in the white matter. To address this question, we present a novel approach that combines direct tracer measurements of entire white matter trajectories in macaque monkeys with diffusion MRI tractography of both macaques and humans. The approach allows us to provide explicit validation of diffusion tractography and transfer tractography strategies across species to test the extent to which inferences from macaques can be applied to human neuroanatomy. Apart from one exception, we found a remarkable overlap between the two techniques in the macaque. Furthermore, the organizational principles followed by vPFC tracts in macaques are preserved in humans.

Original publication




Journal article


J Neurosci

Publication Date





3190 - 3201


Adult, Animals, Brain Stem, Data Interpretation, Statistical, Diffusion Tensor Imaging, Female, Gyrus Cinguli, Humans, Image Processing, Computer-Assisted, Internal Capsule, Macaca fascicularis, Macaca mulatta, Male, Nerve Fibers, Neural Pathways, Prefrontal Cortex, Psychomotor Performance, Reproducibility of Results, Species Specificity, Thalamus, Young Adult