Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Theory predicts that competition for shared resources in a monomorphic population generates divergent selection for adaptation to alternative resources. Experimental tests of this hypothesis are scarce. We selected populations of the bacterium Pseudomonas fluorescens in spatially homogeneous microcosms containing a complex mixture of resources. Initially, all populations consisted of two isogenic clones. The outcome of selection was the evolution of a diverse community of genotypes within each population. Sympatric genotypes exhibited differentiation in metabolic traits related to resource acquisition and frequency-dependent trade-offs in competitive ability, as we would expect if different genotypes consumed different resources. These results are consistent with the hypothesis of adaptive radiation driven by resource competition. Reconciling the results of this study with those of earlier experiments provides a new interpretation of the ecological causes of adaptive radiation in microbial microcosms.

Original publication

DOI

10.1111/j.1461-0248.2004.00689.x

Type

Journal article

Journal

Ecology Letters

Publication Date

01/01/2005

Volume

8

Pages

38 - 46