Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In human functional magnetic resonance imaging (fMRI), a characteristic pattern of frontal and parietal activity is produced by many different cognitive demands. Although frontoparietal cortex has been shown to represent a variety of task features in different contexts, little is known about detailed representation of different task features within and across different regions. We used multi-voxel pattern analysis (MVPA) of human fMRI data to assess the representational content of frontoparietal cortex in a simple stimulus-response task. Stimulus-response mapping rule was the most strongly represented task feature, significantly coded in a lateral frontal region surrounding the inferior frontal sulcus, a more ventral region including the anterior insula/frontal operculum, and the intraparietal sulcus. Next strongest was coding of the instruction cue (screen color) indicating which rule should be applied. Coding of individual stimuli and responses was weaker, approaching significance in a subset of regions. In line with recent single unit data, the results show a broad representation of task-relevant information across human frontoparietal cortex, with strong representation of a general rule or cognitive context, and weaker coding of individual stimulus/response instances.

Original publication

DOI

10.1016/j.neuroimage.2010.04.035

Type

Journal article

Journal

Neuroimage

Publication Date

15/05/2011

Volume

56

Pages

744 - 752

Keywords

Brain Mapping, Female, Frontal Lobe, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Parietal Lobe, Pattern Recognition, Automated, Young Adult