Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Threat-related stimuli are strong competitors for attention, particularly in anxious individuals. We used functional magnetic resonance imaging (fMRI) with healthy human volunteers to study how the processing of threat-related distractors is controlled and whether this alters as anxiety levels increase. Our work builds upon prior analyses of the cognitive control functions of lateral prefrontal cortex (lateral PFC) and anterior cingulate cortex (ACC). We found that rostral ACC was strongly activated by infrequent threat-related distractors, consistent with a role for this area in responding to unexpected processing conflict caused by salient emotional stimuli. Participants with higher anxiety levels showed both less rostral ACC activity overall and reduced recruitment of lateral PFC as expectancy of threat-related distractors was established. This supports the proposal that anxiety is associated with reduced top-down control over threat-related distractors. Our results suggest distinct roles for rostral ACC and lateral PFC in governing the processing of task-irrelevant, threat-related stimuli, and indicate reduced recruitment of this circuitry in anxiety.

Original publication

DOI

10.1038/nn1173

Type

Journal article

Journal

Nat Neurosci

Publication Date

02/2004

Volume

7

Pages

184 - 188

Keywords

Adolescent, Adult, Anxiety, Attention, Brain Mapping, Female, Gyrus Cinguli, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Pattern Recognition, Visual, Photic Stimulation, Prefrontal Cortex