Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Heterozygosity-fitness correlations (HFC) may result from a genome-wide process--inbreeding--or local effects within the genome. The majority of empirical studies reporting HFCs have attributed correlations to inbreeding depression. However, HFCs are unlikely to be caused by inbreeding depression because heterozygosity measured at a small number of neutral markers is unlikely to accurately capture a genome-wide pattern. Testing the strengths of localized effects caused by associative overdominance has proven challenging. In their current paper, Amos and Acevedo-Whitehouse present a novel test for local HFCs. Using stochastic simulations, they determine the conditions under which single-locus HFCs arise, before testing the strength of the correlation between the neutral marker and a linked gene under selection in their simulations. They used insights gained from simulation to statistically investigate the likely cause of correlations between heterozygosity and disease status using data on bovine tuberculosis infections in a wild boar population. They discover that a single microsatellite marker is an excellent predictor of tuberculosis progression in infected individuals. The results are relevant for wild boar management but, more generally, they demonstrate how single-locus HFCs could be used to identify coding loci under selection in free-living populations.

Original publication

DOI

10.1111/j.1365-294X.2009.04219.x

Type

Journal article

Journal

Mol Ecol

Publication Date

07/2009

Volume

18

Pages

2741 - 2742

Keywords

Animals, Cattle, Genetics, Population, Heterozygote, Inbreeding, Microsatellite Repeats, Models, Genetic, Mutation, Sus scrofa, Tuberculosis, Bovine