Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Accurate prediction of life history phenomena and characterisation of selection in free-living animal populations are fundamental goals in evolutionary ecology. In density regulated, structured populations, where individual state influences fate, simple and widely used approaches based on individual lifetime measures of fitness are difficult to justify. We combine recently developed structured population modelling tools with ideas from modern evolutionary game theory (adaptive dynamics) to understand selection on allocation of female reproductive effort to singletons or twins in a size-structured population of feral sheep. In marked contrast to the classical selection analyses, our model-based approach predicts that the female allocation strategy is under negligible directional selection. These differences arise because classical selection analysis ignores components of offspring fitness and fails to consider selection over the complete life cycle.

Original publication

DOI

10.1111/j.1461-0248.2011.01657.x

Type

Journal article

Journal

Ecol Lett

Publication Date

10/2011

Volume

14

Pages

985 - 992

Keywords

Animals, Biological Evolution, Models, Biological, Quantitative Trait, Heritable, Reproduction, Selection, Genetic, Sheep