Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most population-level studies of eco-evolutionary dynamics assume that evolutionary change occurs in response to ecological change and vice versa. However, a growing number of papers report simultaneous ecological and evolutionary change, suggesting that the eco-evolutionary consequences of environmental change for populations can only be fully understood through the simultaneous analysis of statistics used to describe both ecological and evolutionary dynamics. Here we argue that integral projection models (IPM), and matrix approximations of them, provide a powerful approach to integrate population ecology, life history theory, and evolution. We discuss key questions in population biology that can be examined using these models, the answers to which are essential for a general, population-level understanding of eco-evolutionary change.

Original publication




Journal article


Trends Ecol Evol

Publication Date





143 - 148


Adaptation, Biological, Biological Evolution, Climate Change, Models, Theoretical, Population Dynamics