Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mutations in the Aptx gene lead to a neurological disorder known as ataxia oculomotor apraxia-1. The product of Aptx is Aprataxin (Aptx), a DNA-binding protein that resolves abortive DNA ligation intermediates. Aprataxin catalyzes the nucleophilic release of adenylate groups covalently linked to 5' phosphate termini, resulting in termini that can again serve as substrates for DNA ligases. Here we show that Aprataxin acts preferentially on adenylated nicks and double-strand breaks rather than on single-stranded DNA. Moreover, we show that whereas the catalytic activity of Aptx resides within the HIT domain, the C-terminal zinc finger domain provides stabilizing contacts that lock the enzyme onto its high affinity AMP-DNA target site. Both domains are therefore required for efficient AMP-DNA hydrolase activity. Additionally, we find a role for Aprataxin in base excision repair, specifically in the removal of adenylates that arise from abortive ligation reactions that take place at incised abasic sites in DNA. We suggest that Aprataxin may have a general proofreading function in DNA repair, removing DNA adenylates as they arise during single-strand break repair, double-strand break repair, and in base excision repair.

Original publication

DOI

10.1074/jbc.M611489200

Type

Journal article

Journal

J Biol Chem

Publication Date

30/03/2007

Volume

282

Pages

9469 - 9474

Keywords

Adenosine Monophosphate, Amino Acid Sequence, DNA Damage, DNA Repair, DNA-Binding Proteins, Humans, Molecular Sequence Data, Nuclear Proteins, Signal Transduction, Substrate Specificity