Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of α1, α2 and α3 GABA(A) receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the α1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the α1 subunits at both synapses. However, the application of drugs selective for the α2, α3 and α5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-α1 subunits. Immunofluorescence revealed widespread distribution of the α1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the γ2 subunit indicated strong immunoreactivity for GABA(A) α3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABA(A) α2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABA(A) α subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity.

Original publication

DOI

10.1111/j.1460-9568.2010.07552.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

03/2011

Volume

33

Pages

868 - 878

Keywords

Animals, Carrier Proteins, Corpus Striatum, Diazepam, GABA Modulators, GABA-A Receptor Agonists, Globus Pallidus, Male, Membrane Proteins, Neural Pathways, Neurons, Patch-Clamp Techniques, Protein Isoforms, Protein Subunits, Pyridines, Rats, Rats, Sprague-Dawley, Rats, Wistar, Receptors, GABA-A, Synapses