Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Domains are the building blocks of all globular proteins and present one of the most useful levels at which protein function can be understood. Through recombination and duplication of a limited set of domains, proteomes evolved and the collection of protein superfamilies in an organism formed. As such, the presence of a shared domain can be regarded as an indicator of similar function and evolutionary history, but it does not necessarily imply it since convergent evolution may give rise to similar gene functions as well as architectures.Through the wealth of sequences and annotation data brought about by genomics, evolutionary links can be sought for via homology relationships and comparative genomics, structural modeling and phylogenetics. The goal hereby is not only to predict the function of newly discovered proteins, but also to spell out their pathway of evolution and, possibly, identify their most likely origin. This can ultimately help to understand protein function and functional relationships of protein families. Additionally, through comparison with transcriptional data, evolutionary data can be linked to gene (and genome) activity and thus allow for the identification of common principles behind fast evolving proteins and relatively stable ones.In this review, we describe the basic principles of studying protein (domain) evolution and illustrate recent developments in molecular evolution and give valuable new insights in the field of comparative genomics. As an example, we include here molecular models of the multiple PDZ domain protein MUPP-1 and present a simple comparative genomic view on its structural course of evolution.

Original publication

DOI

10.2174/138920208784139537

Type

Journal article

Journal

Curr Genomics

Publication Date

04/2008

Volume

9

Pages

88 - 96

Keywords

Domain, MPDZ, MUPP, PDZ, alignment, molecular evolution, molecular modeling, multiple PDZ domain protein., phylogeny, protein folding