Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Information transfer plays a central role in the biology of most organisms, particularly social species [1, 2]. Although the neurophysiological processes by which signals are produced, conducted, perceived, and interpreted are well understood, the conditions conducive to the evolution of communication and the paths by which reliable systems of communication become established remain largely unknown. This is a particularly challenging problem because efficient communication requires tight coevolution between the signal emitted and the response elicited [3]. We conducted repeated trials of experimental evolution with robots that could produce visual signals to provide information on food location. We found that communication readily evolves when colonies consist of genetically similar individuals and when selection acts at the colony level. We identified several distinct communication systems that differed in their efficiency. Once a given system of communication was well established, it constrained the evolution of more efficient communication systems. Under individual selection, the ability to produce visual signals resulted in the evolution of deceptive communication strategies in colonies of unrelated robots and a concomitant decrease in colony performance. This study generates predictions about the evolutionary conditions conducive to the emergence of communication and provides guidelines for designing artificial evolutionary systems displaying spontaneous communication.

Original publication

DOI

10.1016/j.cub.2007.01.058

Type

Journal article

Journal

Curr Biol

Publication Date

20/03/2007

Volume

17

Pages

514 - 519

Keywords

Artificial Intelligence, Biological Evolution, Communication, Computer Simulation, Robotics