Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Communication is an indispensable component of animal societies, yet many open questions remain regarding the factors affecting the evolution and reliability of signalling systems. A potentially important factor is the level of genetic relatedness between signallers and receivers. To quantitatively explore the role of relatedness in the evolution of reliable signals, we conducted artificial evolution over 500 generations in a system of foraging robots that can emit and perceive light signals. By devising a quantitative measure of signal reliability, and comparing independently evolving populations differing in within-group relatedness, we show a strong positive correlation between relatedness and reliability. Unrelated robots produced unreliable signals, whereas highly related robots produced signals that reliably indicated the location of the food source and thereby increased performance. Comparisons across populations also revealed that the frequency for signal production-which is often used as a proxy of signal reliability in empirical studies on animal communication-is a poor predictor of signal reliability and, accordingly, is not consistently correlated with group performance. This has important implications for our understanding of signal evolution and the empirical tools that are used to investigate communication.

Original publication

DOI

10.1098/rspb.2010.1407

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/02/2011

Volume

278

Pages

378 - 383

Keywords

Animal Communication, Animals, Evolution, Molecular, Robotics, Statistics, Nonparametric