Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a disease with a widely varying prognosis. The majority of patients survive about 3 years, but a significant number survive for 10 years or more, leading to problems in clinical trial design. OBJECTIVE: To demonstrate that simple clinical variables can be used to construct a robust predictive model for survival, and to assess the effect of a known treatment within this model. METHODS: We carried out a retrospective multivariate modelling of a database of 841 patients with ALS seen over a 10-year period in a specialist motor neuron disorders clinic. The use of riluzole was tested as a prognostic factor within the model. RESULTS: A prognostic score generated from one cohort of patients predicted survival for a second cohort of patients (r(2) = 0.78). Prognostic variables included site of onset, age of onset, time from symptom onset to diagnosis, and El Escorial category at presentation. Riluzole therapy was an independently significant prognostic factor (relative risk of death 0.48, P < 0.0001, model chi(2) 297, P < 0.0001). CONCLUSIONS: Clinical databases can be used to generate multivariate prognostic models in ALS. Such models could be used to predict survival, to improve criteria for matching of patients in future clinical trials, and to test the impact of interventions.

Original publication




Journal article


Amyotroph Lateral Scler Other Motor Neuron Disord

Publication Date





15 - 21


Age of Onset, Amyotrophic Lateral Sclerosis, Cohort Studies, Female, Humans, London, Male, Middle Aged, Models, Biological, Models, Statistical, Multivariate Analysis, Prognosis, Retrospective Studies, Riluzole, Risk Factors, Sex Factors, Survival Analysis, Survival Rate, Treatment Outcome