Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To study the variability of peripheral refraction in a population of 43 subjects with low foveal refractive errors. METHODS: A scan of the refractive error in the vertical pupil meridian of the right eye of 43 subjects (age range, 18 to 80 years, foveal spherical equivalent, < ± 2.5 diopter) over the central ± 45° of the visual field was performed using a recently developed angular scanning photorefractor. Refraction profiles across the visual field were fitted with four different models: (1) "flat model" (refractions about constant across the visual field), (2) "parabolic model" (refractions follow about a parabolic function), (3) "bi-linear model" (linear change of refractions with eccentricity from the fovea to the periphery), and (4) "box model" ("flat" central area with a linear change in refraction from a certain peripheral angle). Based on the minimal residuals of each fit, the subjects were classified into one of the four models. RESULTS: The "box model" accurately described the peripheral refractions in about 50% of the subjects. Peripheral refractions in six subjects were better characterized by a "linear model," in eight subjects by a "flat model," and in eight by the "parabolic model." Even after assignment to one of the models, the variability remained strikingly large, ranging from -0.75 to 6 diopter in the temporal retina at 45° eccentricity. CONCLUSIONS: The most common peripheral refraction profile (observed in nearly 50% of our population) was best described by the "box model." The high variability among subjects may limit attempts to reduce myopia progression with a uniform lens design and may rather call for a customized approach.

Original publication

DOI

10.1097/OPX.0b013e31820bb0f5

Type

Journal article

Journal

Optom Vis Sci

Publication Date

03/2011

Volume

88

Pages

E388 - E394

Keywords

Adolescent, Adult, Aged, Aged, 80 and over, Fovea Centralis, Humans, Linear Models, Middle Aged, Models, Theoretical, Refraction, Ocular, Refractive Errors, Retina, Visual Fields, Young Adult