Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS: Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark- and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach ½Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS: Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 μV; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m²) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS: This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease.

Original publication




Journal article


Invest Ophthalmol Vis Sci

Publication Date





5552 - 5561


Adaptation, Ocular, Animals, Electric Stimulation Therapy, Electroretinography, Immunohistochemistry, Light, Photoreceptor Cells, Vertebrate, Rats, Rats, Sprague-Dawley, Retinal Degeneration, Rhodopsin, Staining and Labeling