Early telencephalic migration topographically converging in the olfactory cortex.
García-Moreno F., López-Mascaraque L., de Carlos JA.
Neurons that participate in the olfactory system arise in different areas of the developing mouse telencephalon. The generation of these different cell populations and their tangential migration into the olfactory cortex (OC) was tracked by tracer injection and in toto embryo culture. Cells originating in the dorsal lateral ganglionic eminence (LGE) migrate tangentially along the anteroposterior axis to settle in the piriform cortex (PC). Those originating in the ventral domain of this structure occupy the thickness of the olfactory tubercle (OT), whereas cells from the rostral LGE migrate tangentially into the most anterior telencephalon, at the level of the prospective olfactory bulb (pOB). Neurons from the dorsal telencephalon migrate ventrally, bordering the PC, toward olfactory structures. Two cell populations migrate tangentially from the rostromedial telencephalic wall to the OT and the PC, passing through the ventromedial and dorsolateral face of the telencephalon. Some cells from the germinative area of the rostral telencephalon, at the level of the septoeminential sulcus, migrate rostrally to the pOB or caudally to the OC. Thus, we demonstrate multiple telencephalic origins for the first olfactory neurons and each population following different migratory routes to colonize the OC according to an accurate topographic map.