Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We report an English kindred affected across 4 generations with a hereditary neuropathy associated with debilitating neuropathic pain as the main clinical feature. The principal finding on clinical examination was sensory loss, and there was variable motor dysfunction. Electrophysiological studies revealed mild features of demyelination with median conduction velocity in the intermediate range. There was an autosomal-dominant pattern of inheritance, and genetic testing revealed a novel heterozygous Trp101X mutation in exon 3 coding for a portion of the extracellular domain of myelin protein zero. This is predicted to lead to premature termination of translation. Myelin protein zero is a key structural component of compact myelin, and over 100 mutations in this protein have been reported, which can give rise to neuropathies with either axonal, demyelinating, or intermediate features encompassing a wide range of severity. Chronic pain is an increasingly recognised sequela of certain hereditary neuropathies and may be musculoskeletal or neuropathic in origin. In this kindred, the neuropathy was relatively mild in severity, however, neuropathic pain was an important and disabling outcome.

Original publication

DOI

10.1016/j.pain.2012.05.015

Type

Journal article

Journal

Pain

Publication Date

08/2012

Volume

153

Pages

1763 - 1768

Keywords

Adolescent, Adult, Charcot-Marie-Tooth Disease, Female, Genetic Association Studies, Genetic Markers, Genetic Predisposition to Disease, Humans, Male, Mutation, Myelin P0 Protein, Neuralgia, Polymorphism, Single Nucleotide, Young Adult