Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization. In Drosophila melanogaster, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA in the oocyte and embryo. Both transcripts are translationally silent while being localized within the oocyte along microtubules by cytoplasmic dynein. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-α signal to the overlying somatic cells. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos when it forms an anteroposterior morphogenetic gradient. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live-cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron-dense bodies that lack ribosomes and contain translational repressors. These properties are characteristic of processing bodies (P bodies), which are considered to be regions of cytoplasm where decisions are made on the translation and degradation of mRNA. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Oo18 RNA-binding protein (Orb, a homologue of CEPB) and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodelling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core.

Original publication

DOI

10.1038/ncb2627

Type

Journal article

Journal

Nat Cell Biol

Publication Date

12/2012

Volume

14

Pages

1305 - 1313

Keywords

Animals, Body Patterning, Drosophila Proteins, Drosophila melanogaster, Fluorescent Antibody Technique, Homeodomain Proteins, In Situ Hybridization, Fluorescence, Microscopy, Electron, RNA, Messenger, RNA-Binding Proteins, Trans-Activators, Transforming Growth Factor alpha