Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plant growth and development are regulated by numerous internal and external factors. Among these, gibberellin (GA) (an endogenous plant growth regulator) and phytochrome (a photoreceptor) often influence the same processes. For example, in plants grown in the light Arabidopsis thaliana hypocotyl elongation is reduced by GA deficiency and increased by phytochrome deficiency. Here we describe experiments in which the phenotypes of Arabidopsis plants doubly homozygous for GA-related and phytochrome-related mutations were examined. The double mutants were studied at various stages in the plant life cycle, including the seed germination, young seedling, adult, and reproductive phases of development. The results of these experiments are complex, but indicate that a fully functional GA system is necessary for full expression of the elongated phenotypes conferred by phytochrome deficiency.


Journal article


Plant Physiol

Publication Date





1051 - 1058


Arabidopsis, Chlorophyll, Gibberellins, Hypocotyl, Light, Mutation, Phenotype, Phytochrome, Seeds