Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plant-derived nitric oxide (NO) triggers defence, priming the onset of the hypersensitive response and restricting pathogen ingress during incompatibility. However, little is known about the role of pathogen-produced NO during pre-infection development and infection. We sought evidence for NO production by the rice blast fungus during early infection. NO production was measured using fluorescence of DAR-4M and the role of NO assessed using NO scavengers. The synthesis of NO was investigated by targeted knockout of genes potentially involved in NO synthesis, including nitric oxide synthase-like genes (NOL2 and NOL3) and nitrate (NIA1) and nitrite reductase (NII1), generating single and double Δnia1Δnii1, Δnia1Δnol3, and Δnol2Δnol3 mutants. We demonstrate that Magnaporthe oryzae generates NO during germination and in early development. Removal of NO delays germling development and reduces disease lesion numbers. NO is not generated by the candidate proteins tested, nor by other arginine-dependent NO systems, by polyamine oxidase activity or non-enzymatically by low pH. Furthermore, we show that, while NIA1 and NII1 are essential for nitrate assimilation, NIA1, NII1, NOL2 and NOL3 are all dispensable for pathogenicity. Development of M. oryzae and initiation of infection are critically dependent on fungal NO synthesis, but its mode of generation remains obscure.

Original publication

DOI

10.1111/j.1469-8137.2012.04368.x

Type

Journal article

Journal

New Phytol

Publication Date

01/2013

Volume

197

Pages

207 - 222

Keywords

Enzyme Activation, Fluorescence, Free Radical Scavengers, Gene Knockout Techniques, Genes, Fungal, Hordeum, Host-Pathogen Interactions, Hydrogen-Ion Concentration, Magnaporthe, Markov Chains, Nitrate Reductase, Nitrates, Nitric Oxide, Oryza, Plant Diseases, Rhodamines, Signal Transduction, Spores, Fungal