Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The rhomboids are a well-conserved family of intramembrane serine proteases, which are unrelated to the classical soluble serine proteases. Their active site is buried within the plane of the membrane, and they cleave substrates in or near transmembrane domains. Although recently discovered, it is becoming clear that rhomboids control many important cellular functions. This review briefly describes recent biochemical and structural work that begins to explain how proteolysis occurs in a hydrophobic environment, but then focuses more extensively on the emerging biological functions of rhomboids. Although the function of most rhomboids is not yet known, they have already been implicated in growth factor signaling, mitochondrial function, host cell invasion by apicomplexan parasites, and protein translocation across membranes in bacteria. By exploiting cellular membrane trafficking machinery, rhomboids have evolved novel strategies to regulate proteolysis.

Original publication

DOI

10.1146/annurev.genet.42.110807.091628

Type

Journal article

Journal

Annu Rev Genet

Publication Date

2008

Volume

42

Pages

191 - 210

Keywords

Animals, Apicomplexa, Bacteria, Drosophila, Humans, Mitochondria, Models, Biological, Models, Molecular, Saccharomyces cerevisiae, Serine Endopeptidases