Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The organisation of transcription in the mammalian nucleus is a topic of particular interest because of its relevance to gene regulation. RNA polymerase II transcription occurs at hundreds of sites throughout the nucleoplasm. Recent data indicate that coordinately regulated genes can localise to shared transcription sites. Other transcribed sequences have also been shown to cluster in the nucleus. The ribosomal RNA genes cluster in the nucleoli. Similarly, transiently transfected plasmids and dsDNA viruses form transcription domains (TDs) containing multiple templates. Intriguingly, plasmids expressing beta-globin gene sequences recruit the endogenous beta-globin loci to their TDs. In light of this observation, we have investigated plasmid TDs as a model for gene recruitment. We find that TD formation is dependent on the presence of homologous gene sequences. Plasmids containing non-homologous gene sequences form separate TDs, independent of homology in the backbone or promoter sequences. TD formation is also favoured by low plasmid concentrations. This effect is sequence-specific and high concentrations of one plasmid do not disrupt domain formation by non-homologous plasmids in the same cell. We conclude that recruitment into TDs is an active process that is driven by homologies between transcribed sequences and becomes saturated at high copy numbers.

Original publication




Journal article


J Cell Sci

Publication Date





3876 - 3887


Base Sequence, Biological Transport, Chromatin, Gene Expression Regulation, Globins, HeLa Cells, Humans, Intranuclear Inclusion Bodies, Plasmids, Promoter Regions, Genetic, Sequence Homology, Nucleic Acid, Transcription, Genetic, Transfection