Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1-Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1g-Nlg1 seems to orchestrate early assembly processes between pre-and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds. © 2012 Nature America, Inc. All rights reserved.

Original publication




Journal article


Nature Neuroscience

Publication Date





1219 - 1226