Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain-derived neurotrophic factor (BDNF) plays an important role in learning, memory, and brain plasticity. Humans with a val66met polymorphism in the BDNF gene have reduced levels of BDNF and alterations in motor learning and short-term cortical plasticity. In the current study, we sought to further explore the role of BDNF in motor learning by testing human subjects on a visuomotor adaptation task. In experiment 1, 21 subjects with the polymorphism (val/met) and 21 matched controls (val/val) were tested during learning, short-term retention (45 min), long-term retention (24 h), and de-adaptation of a 60° visuomotor deviation. We measured both mean error as well as rate of adaptation during each session. There was no difference in mean error between groups; however, val/met subjects had a reduced rate of adaptation during learning as well as during long-term retention, but not short-term retention or de-adaptation. In experiment 2, 12 val/met and 12 val/val subjects were tested on a larger 80° deviation, revealing a more pronounced difference in mean error during adaptation than the 60° deviation. These results suggest that BDNF may play an important role in visuomotor adaptive processes in the human.

Original publication

DOI

10.1007/s00221-012-3239-9

Type

Journal article

Journal

Exp Brain Res

Publication Date

11/2012

Volume

223

Pages

43 - 50

Keywords

Adaptation, Physiological, Amino Acid Substitution, Analysis of Variance, Brain-Derived Neurotrophic Factor, Data Interpretation, Statistical, Female, Genotype, Humans, Learning, Male, Polymorphism, Genetic, Psychomotor Performance, Young Adult