Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The antimicrobial peptide maculatin 1.1 (M1.1) is an amphipathic α-helix that permeabilizes lipid bilayers. In coarse-grained molecular dynamics (CG MD) simulations, M1.1 has previously been shown to form membrane-spanning aggregates in DPPC bilayers. In this study, a simple multiscale methodology has been applied to allow sampling of important regions of the free energy surface at higher resolution. Thus, by back-converting the CG configurations to atomistic representations, it is shown that water is able to permeate through the M1.1 aggregates. Investigation of aggregate stoichiometry shows that at least six peptides are required for water permeation. The aggregates are dynamically disordered structures, and water flux occurs through irregular, fluctuating channels. The results are discussed in relation to experimental data and other simulations of antimicrobial peptides.

Original publication

DOI

10.1021/jp212358y

Type

Journal article

Journal

J Phys Chem B

Publication Date

26/07/2012

Volume

116

Pages

8485 - 8493

Keywords

Amphibian Proteins, Animals, Antimicrobial Cationic Peptides, Anura, Lipid Bilayers, Molecular Dynamics Simulation, Permeability, Protein Structure, Secondary, Thermodynamics, Water