Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The presence of cytosolic and plastidic pathways of carbohydrate oxidation is a characteristic feature of plant cell metabolism. Ideally, steady-state metabolic flux analysis, an emerging tool for creating flux maps of heterotrophic plant metabolism, would capture this feature of the metabolic phenotype, but the extent to which this can be achieved is uncertain. To address this question, fluxes through the pathways of central metabolism in a heterotrophic Arabidopsis (Arabidopsis thaliana) cell suspension culture were deduced from the redistribution of label in steady-state (13)C-labeling experiments using [1-(13)C]-, [2-(13)C]-, and [U-(13)C(6)]glucose. Focusing on the pentose phosphate pathway (PPP), multiple data sets were fitted simultaneously to models in which the subcellular compartmentation of the PPP was altered. The observed redistribution of the label could be explained by any one of three models of the subcellular compartmentation of the oxidative PPP, but other biochemical evidence favored the model in which the oxidative steps of the PPP were duplicated in the cytosol and plastids, with flux through these reactions occurring largely in the cytosol. The analysis emphasizes the inherent difficulty of analyzing the PPP without predefining the extent of its compartmentation and the importance of obtaining high-quality data that report directly on specific subcellular processes. The Arabidopsis flux map also shows that the potential ATP yield of respiration in heterotrophic plant cells can greatly exceed the direct metabolic requirements for biosynthesis, highlighting the need for caution when predicting flux through metabolic networks using assumptions based on the energetics of resource utilization.

Original publication

DOI

10.1104/pp.109.151316

Type

Journal article

Journal

Plant Physiol

Publication Date

02/2010

Volume

152

Pages

602 - 619

Keywords

Arabidopsis, Carbon Isotopes, Cells, Cultured, Isotope Labeling, Models, Biological, Pentose Phosphate Pathway