Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The generation of multiple sequence alignments (MSAs) is a crucial step for many bioinformatic analyses. Thus improving MSA accuracy and identifying potential errors in MSAs is important for a wide range of post-genomic research. We present a novel method called MergeAlign which constructs consensus MSAs from multiple independent MSAs and assigns an alignment precision score to each column. RESULTS: Using conventional benchmark tests we demonstrate that on average MergeAlign MSAs are more accurate than MSAs generated using any single matrix of sequence substitution. We show that MergeAlign column scores are related to alignment precision and hence provide an ab initio method of estimating alignment precision in the absence of curated reference MSAs. Using two novel and independent alignment performance tests that utilise a large set of orthologous gene families we demonstrate that increasing MSA performance leads to an increase in the performance of downstream phylogenetic analyses. CONCLUSION: Using multiple tests of alignment performance we demonstrate that this novel method has broad general application in biological research.

Original publication

DOI

10.1186/1471-2105-13-117

Type

Journal article

Journal

BMC Bioinformatics

Publication Date

30/05/2012

Volume

13

Keywords

Amino Acid Substitution, Consensus Sequence, Image Processing, Computer-Assisted, Phylogeny, Sequence Alignment, Software