Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.

Original publication

DOI

10.1111/j.1365-2818.2008.02043.x

Type

Journal article

Journal

J Microsc

Publication Date

08/2008

Volume

231

Pages

317 - 331

Keywords

Food, Fungi, Image Processing, Computer-Assisted, Microscopy, Confocal, Microscopy, Fluorescence, Microscopy, Video, Mycelium