Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The aim of this study was to test the assumption that (13)C-enrichment of respiratory substrate does not perturb metabolism. Cell suspension cultures of Arabidopsis thaliana were grown in MS medium containing unlabelled glucose (with (13)C at natural abundance), 100% [1-(13)C]glucose, 100% [U-(13)C(6)]glucose or 10% [U-(13)C(6)]glucose plus 90% unlabelled glucose. There was no significant difference in the metabolism of [U-(14)C]glucose between the cultures. Similarly, the pattern of (14)CO(2) release from specifically labelled [(14)C]-substrates was unaffected. Principal component analysis of (13)C-decoupled (1)H NMR metabolite fingerprints of cell extracts was unable to discriminate between the different culture conditions. It is concluded that (13)C-enrichment of the growth substrate has no effect on flux through the central pathways of carbon metabolism in higher plants. This conclusion supports the implicit assumption in metabolic flux analysis that steady-state (13)C-labelling does not perturb fluxes through the reactions of the metabolic network it seeks to quantify.

Original publication




Journal article



Publication Date





2176 - 2188


Arabidopsis, Carbon Dioxide, Carbon Isotopes, Cells, Cultured, Culture Media, Glucose, Multivariate Analysis, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Plant Extracts