Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major transition in land plant evolution was from growth in water to growth on land. This transition necessitated major morphological innovations that were accompanied by the development of three-dimensional apical growth. In extant land plants, shoot growth occurs from groups of cells at the apex known as meristems. In different land plant lineages, meristems function in different ways to produce distinct plant morphologies, yet our understanding of the developmental basis of meristem function is limited to the most recently diverged angiosperms. To redress this balance, we have examined meristem function in the lycophyte Selaginella kraussiana. Using a clonal analysis, we show that S. kraussiana shoots are derived from the activity of two short-lived apical initials that facilitate the formation of four axes of symmetry in the shoot. Leaves are initiated from just two epidermal cells, and the mediolateral leaf axis is the first to be established. This pattern of development differs from that seen in flowering plants. These differences are discussed in the context of the development and evolution of diverse land plant forms.

Original publication




Journal article



Publication Date





881 - 889


Biological Evolution, Cell Lineage, Meristem, Plant Epidermis, Plant Leaves, Plant Shoots, Selaginellaceae