Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Crystallographic analysis of human Hfe has documented an overall structure similar to classical (class Ia) MHC molecules with a peptide binding groove deprived of ligand. Thus, to address the question of whether alphabeta T cells could recognize MHC molecules independently of bound ligands, we studied human and mouse Hfe interactions with T lymphocytes. We provide formal evidence of direct cytolytic recognition of human Hfe by mouse alphabeta T cell receptors (TCR) in HLA-A*0201 transgenic mice and that this interaction results in ZAP-70 phosphorylation. Furthermore, direct recognition of mouse Hfe molecules by cytotoxic T lymphocytes (CTLs) was demonstrated in DBA/2 Hfe knockout mice. These CTLs express predominantly two T cell antigen receptor alpha variable gene segments (AV6.1 and AV6.6). Interestingly, in wild-type mice we identified a subset of CD8+ T cells positively selected by Hfe that expresses the AV6.1/AV6.6 gene segments. T cell antigen receptor recognition of MHC molecules independently of bound ligand has potential general implications in alloreactivity and identifies in the Hfe case a cognitive link supporting the concept that the immune system could be involved in the control of iron metabolism.

Original publication

DOI

10.1073/pnas.0502309102

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

06/09/2005

Volume

102

Pages

12855 - 12860

Keywords

Animals, Antigen-Presenting Cells, Cell Line, Hemochromatosis Protein, Histocompatibility Antigens Class I, Humans, Membrane Proteins, Mice, Mice, Knockout, Receptors, Antigen, T-Cell, T-Lymphocytes, Cytotoxic