Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We propose a methodology for extracting social network structure from spatio-temporal datasets that describe timestamped occurrences of individuals. Our approach identifies temporal regions of dense agent activity and links are drawn between individuals based on their co-occurrences across these 'gathering events'. The statistical significance of these connections is then tested against an appropriate null model. Such a framework allows us to exploit the wealth of analytical and computational tools of network analysis in settings where the underlying connectivity pattern between interacting agents (commonly termed the adjacency matrix) is not given a priori. We perform experiments on two large-scale datasets (greater than 10(6) points) of great tit Parus major wild bird foraging records and illustrate the use of this approach by examining the temporal dynamics of pairing behaviour, a process that was previously very hard to observe. We show that established pair bonds are maintained continuously, whereas new pair bonds form at variable times before breeding, but are characterized by a rapid development of network proximity. The method proposed here is general, and can be applied to any system with information about the temporal co-occurrence of interacting agents.

Original publication

DOI

10.1098/rsif.2012.0223

Type

Journal article

Journal

J R Soc Interface

Publication Date

07/11/2012

Volume

9

Pages

3055 - 3066

Keywords

Animals, Ecosystem, England, Models, Theoretical, Pair Bond, Passeriformes, Social Behavior, Spatial Behavior, Time Factors