Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS) is a heterogeneous disorder characterised by fetal akinesia and developmental defects including, in some case, pterygia. Multiple pterygium syndromes (MPS) are traditionally divided into prenatally lethal and non-lethal (such as Escobar) types. Previously, we and others reported that homozygous mutations in the fetal acetylcholine receptor gamma subunit (CHRNG) can cause both lethal and non-lethal MPS, demonstrating that pterygia resulted from fetal akinesia, and that mutations in the acetylcholine receptor subunits CHRNA1, CHRND, and Rapsyn (RAPSN) can also result in a MPS/FADS phenotype. METHODS: We hypothesised that mutations in other acetylcholine receptor related genes may interfere with neurotransmission at the neuromuscular junction and so we analysed 14 cases of lethal MPS/FADS without CHRNG, CHRNA1, CHRNB1, CHRND, or RAPSN mutations for mutations in DOK7. RESULTS: A homozygous DOK7 splice site mutation, c.331+1G>T, was identified in a family with three children affected with lethal FADS. Previously DOK7 mutations have been reported to underlie a congenital myaesthenic syndrome with a characteristic "limb girdle" pattern of muscle weakness. CONCLUSION: This finding is consistent with the hypothesis that whereas incomplete loss of DOK7 function may cause congenital myasthenia, more severe loss of function can result in a lethal fetal akinesia phenotype.

Original publication




Journal article


J Med Genet

Publication Date





338 - 340


Abnormalities, Multiple, Alternative Splicing, Base Sequence, Child, Consanguinity, DNA Mutational Analysis, Developmental Disabilities, Female, Germ-Line Mutation, Humans, India, Male, Muscle Proteins, RNA Splice Sites, Syndrome