Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A quantitative mechanism is presented that links protein denaturation and the protein-water glass transition through an energy criterion for the onset of mobility of strong protein-water bonds. Differences in the zero point vibrational energy in the ordered and disordered bonded states allow direct prediction of the two transition temperatures. While the onset of water mobility induces the same change in heat capacity for both transitions, the order-disorder transition of denaturation also predicts the observed excess enthalpy gain. The kinetics of the water and protein components through the glass transition are predicted and compared with dielectric spectroscopy observations. The energetic approach provides a consistent mechanism for processes such as refolding and aggregation of proteins involved in protein maintenance and adaptability, as the conformational constraints of strong water-amide bonds are lost with increased molecular mobility. Moreover, we suggest that the ordered state of peptide-water bonds is induced at the point of protein synthesis and could play a key role in the function of proteins through the enhancement of electronic activity by ferroelectric domains in the protein hydration shell, which is lost upon denaturation.

Original publication




Journal article


Biochim Biophys Acta

Publication Date





785 - 791


Algorithms, Crystallization, Hydrogen Bonding, Kinetics, Models, Molecular, Phase Transition, Protein Denaturation, Proteins, Solvents, Thermodynamics, Water