Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mitochondrial biogenesis and metabolism were investigated during maize (Zea mays) seed germination. Mitochondria from dry and imbibed seed exhibited NADH-dependent O(2) uptake that was completely inhibited by KCN and antimycin A. Mitochondria in the dry seed had a lower rate of succinate-dependent O(2) uptake relative to that measured in imbibed and germinated seed. The activities of the tricarboxylic acid (TCA) cycle enzymes, pyruvate dehydrogenase complex, 2-oxoglutarate dehydrogenase complex, NAD-malic enzyme, and citrate synthase, are similarly low in mitochondria from dry seed and this correlates with a lower relative abundance of the mitochondrial matrix-located citrate synthase and pyruvate dehydrogenase complex E1alpha-subunit polypeptides. Electron microscopy revealed that mitochondria in the dry seed have a poorly developed internal membrane structure with few cristae; following 24 h of germination the mitochondria developed a more normal structure with more developed cristae. The mitochondria from maize embryos could be fractionated into two subpopulations by Suc density gradient centrifugation: one subpopulation of buoyant density equivalent to 22% to 28% (w/w) Suc; the other equivalent to 37% to 42% (w/w) Suc. These two subpopulations had different activities of specific mitochondrial enzymes and contained different amounts of specific mitochondrial proteins as revealed by western-blot analysis. Both subpopulations from the dry embryo were comprised of poorly developed mitochondria. However, during imbibition mitochondria in the heavy fraction (37%-42% [w/w] Suc) progressively acquired characteristics of fully functional mitochondria found in the germinated seedling in terms of structure, enzymic activity, and protein complement. In contrast, mitochondria in the light fraction (22% to 28% [w/w] Suc) show no significant structural change during imbibition and the amounts of specific mitochondrial proteins decreased significantly during germination.

Type

Journal article

Journal

Plant Physiol

Publication Date

02/2001

Volume

125

Pages

662 - 672

Keywords

Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, Genome, Plant, Germination, Mitochondria, Oxidoreductases, Oxygen Consumption, Plant Proteins, Water, Zea mays