Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Alpha-synuclein is involved in dopaminergic neurotransmission and has been implicated in a number of neurodegenerative disorders, such as Parkinson's disease. Recent studies, in humans and in rat and monkey models, have suggested that alpha-synuclein may play a role in the development and maintenance of certain addictive disorders. METHODS: Fifteen single-nucleotide polymorphisms (SNPs) in the alpha-synuclein gene (SNCA) and 1 upstream microsatellite repeat (NACP-REP1) were assayed in Southwest (SW; n=514) and Plains (n=420) American Indian populations. Patterns of linkage disequilibrium (LD) at SNCA were determined for the 2 populations and compared with Caucasian, African, and Asian populations in the HapMap database ( Assayed alleles and constructed haplotypes in the study populations were tested for association with 4 clinical phenotypes [alcohol dependence, alcohol use disorders, drug dependence, and drug use disorders (lifetime diagnoses)] as well as with 2 symptom count phenotypes (all 18 questions and the 8 questions diagnostic for alcohol dependence). RESULTS: Patterns of LD at SNCA were similar in both Indian populations and were consistent with the LD structure in other populations as reflected in the HapMap database. Single allele tests revealed significant associations between 4 SNPs and drug dependence in the SW population and between 2 of those SNPs plus 2 other SNPs and drug dependence in SW males only. In the Plains population, a significant association was detected only in males between 2 SNPs and alcohol use disorders and between 1 SNP and alcohol dependence. In the SW population, 1 SNP was marginally significant with the total symptom count. However, in all cases, the support was modest and disappeared with correction for multiple comparisons. No association was found between constructed haplotypes and any of the phenotypes in either population. CONCLUSIONS: Despite modest support for association between multiple SNCA SNPs and several of the addictive disorders tested in this study, statistical significance disappeared after correction for multiple testing. Thus, our data do not support a role for a variant in the SNCA gene that contributes to alcohol or drug addiction in the 2 studied American Indian populations. Future research may focus on variants in the promoter region that could cause the changes in mRNA and protein levels observed in previous studies.

Original publication




Journal article


Alcohol Clin Exp Res

Publication Date





546 - 554


Adult, Aged, Aged, 80 and over, Alcoholism, Alleles, Female, Genotype, Haplotypes, Humans, Indians, North American, Linkage Disequilibrium, Male, Microsatellite Repeats, Middle Aged, Polymorphism, Single Nucleotide, Psychological Tests, Sex Characteristics, Substance-Related Disorders, alpha-Synuclein