Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Despite highly active antiretroviral therapy (HAART), AIDS related lymphoma (ARL) occurs at a significantly higher rate in patients infected with the Human Immunodeficiency Virus (HIV) than in the general population. HIV-infected macrophages are a known viral reservoir and have been shown to have lymphomagenic potential in SCID mice; therefore, there is an interest in determining if a viral component to lymphomagenesis also exists. We sequenced HIV-1 envelope gp120 clones obtained post mortem from several tumor and non-tumor tissues of two patients who died with AIDS-related Non-Hodgkin's lymphoma (ARL-NH). Similar results were found in both patients: 1) high-resolution phylogenetic analysis showed a significant degree of compartmentalization between lymphoma and non-lymphoma viral sub-populations while viral sub-populations from lymph nodes appeared to be intermixed within sequences from tumor and non-tumor tissues, 2) a 100-fold increase in the effective HIV population size in tumor versus non-tumor tissues was associated with the emergence of lymphadenopathy and aggressive metastatic ARL, and 3) HIV gene flow among lymph nodes, normal and metastatic tissues was non-random. The different population dynamics between the viruses found in tumors versus the non-tumor associated viruses suggest that there is a significant relationship between HIV evolution and lymphoma pathogenesis. Moreover, the study indicates that HIV could be used as an effective marker to study the origin and dissemination of lymphomas in vivo.

Original publication

DOI

10.1371/journal.pone.0008153

Type

Journal article

Journal

PLoS One

Publication Date

03/12/2009

Volume

4

Keywords

Base Sequence, Biological Evolution, Gene Flow, HIV Core Protein p24, HIV Envelope Protein gp120, HIV-1, Humans, Lymphoma, Non-Hodgkin, Macrophages, Male, Neoplasm Metastasis, Organ Specificity, Phylogeny, Postmortem Changes