Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Bundle sheath defective2 (Bsd2) gene is required for ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) accumulation in maize. Using a Mutator transposable element as a molecular probe, we identified a tightly linked restriction fragment length polymorphism that cosegregated with the bsd2-conferred phenotype. This fragment was cloned, and sequences flanking the Mutator insertion were used to screen a maize leaf cDNA library. Using a full-length cDNA clone isolated in this screen, we show that an abundant 0.6-kb transcript could be detected in wild-type plants but not in bsd2-m1 plants. This 0.6-kb transcript accumulated to low levels in plants carrying an allele derived from bsd2-m1 that conditions a less severe mutant phenotype. Taken together, these data strongly suggest that we have cloned the Bsd2 gene. Sequence analysis of the full-length cDNA clone revealed a chloroplast targeting sequence and a region of homology shared between BSD2 and the DnaJ class of molecular chaperones. This region of homology is limited to a cysteine-rich Zn binding domain in DnaJ believed to play a role in protein-protein interactions. We show that BSD2 is targeted to the chloroplast but is not involved in general photosynthetic complex assembly or protein import. In bsd2 mutants, we could not detect the Rubisco protein, but the chloroplast-encoded Rubisco large subunit transcript (rbcL) was abundant and associated with polysomes in both bundle sheath and mesophyll cells. By characterizing Bsd2 expression patterns and analyzing the bsd2-conferred phenotype, we propose a model for BSD2 in the post-translational regulation of rbcL in maize.


Journal article


Plant Cell

Publication Date





849 - 864


Amino Acid Sequence, Base Sequence, Biological Transport, Cell Compartmentation, Chloroplasts, Cloning, Molecular, DNA Transposable Elements, Gene Expression Regulation, Plant, Genetic Linkage, Light, Models, Biological, Molecular Sequence Data, Plant Proteins, Plant Shoots, Polyribosomes, Protein Processing, Post-Translational, Protein Sorting Signals, Restriction Mapping, Ribulose-Bisphosphate Carboxylase, Sequence Analysis, DNA, Tissue Distribution, Zea mays