Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Survival is a key fitness component and the evolution of age- and stage-specific patterns in survival is a central question in evolutionary biology. In variable environments, favouring chances of survival at the expense of other fitness components could increase fitness by spreading risk across uncertain conditions, especially if environmental conditions improve in the future. Both the magnitude of environmental variation and temporal autocorrelation in the environment might therefore affect the evolution of survival patterns. Despite this, the influence of temporal autocorrelation on the evolution of survival patterns has not been addressed. Here, we use a trade-off structure which reflects the empirically inspired paradigm of acquisition and allocation of resources to investigate how the evolutionarily stable survival probability is shaped in variable, density-dependent environments. We show that temporal autocorrelation is likely to be an important aspect of environmental variability that contributes to shaping age- and stage-specific patterns of survival probabilities in nature.

Original publication

DOI

10.1098/rspb.2007.0561

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/09/2007

Volume

274

Pages

2153 - 2160

Keywords

Biological Evolution, Environment, Models, Genetic, Plant Physiological Phenomena, Plants