Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Understanding the adaptations that allow species to live in temporally variable environments is essential for predicting how they may respond to future environmental change. Variation at the intergenerational scale can allow the evolution of bet-hedging strategies: a novel genotype may be favoured over an alternative with higher arithmetic mean fitness if the new genotype experiences a sufficiently large reduction in temporal fitness variation; the successful genotype is said to have traded off its mean and variance in fitness in order to 'hedge its evolutionary bets'. We review the evidence for bet-hedging in a range of simple plant systems that have proved particularly tractable for studying bet-hedging under natural conditions. We begin by outlining the essential theory, reiterating the important distinction between conservative and diversified bet-hedging strategies. We then examine the theory and empirical evidence for the canonical example of bet-hedging: diversification via dormant seeds in annual plants. We discuss the complications that arise when moving beyond this simple case to consider more complex life-history traits, such as flowering size in semelparous perennial plants. Finally, we outline a framework for accommodating these complications, emphasizing the central role that model-based approaches can play.

Original publication

DOI

10.1098/rspb.2010.0707

Type

Journal article

Journal

Proc Biol Sci

Publication Date

22/10/2010

Volume

277

Pages

3055 - 3064

Keywords

Adaptation, Physiological, Biological Evolution, Germination, Plant Development, Plant Dormancy, Selection, Genetic, Stochastic Processes