Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Noncontact mode atomic force microscopy was used to investigate native silk proteins prepared in different ways. Low protein concentrations revealed that single protein molecules exhibit a simple, round shape with apparent diameters of 20-25 nm. Shearing the native protein solutions after extraction from the gland and prior to drying led to a beads-on-a-string assembly at the nanometer scale. Protein concentration had a significant effect on the morphology of the protein assemblies. At higher protein concentrations, shear-induced alignment into nanofibrils was observed, while lower concentrations lead to the formation of much thinner fibrils with a width of about 8 nm.

Original publication




Journal article



Publication Date





676 - 682


Animals, Bombyx, Insect Proteins, Microscopy, Atomic Force, Shear Strength, Silk, Stress, Mechanical