Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The "Swine flu" pandemic of 2009 caused world-wide infections and deaths. Early efforts to understand its rate of spread were used to predict the probable future number of cases, but by the end of 2009 it was clear that these predictions had substantially overestimated the pandemic's eventual impact. In England, the Health Protection Agency made announcements of the number of cases of disease, which turned out to be surprisingly low for an influenza pandemic. The agency also carried out a serological survey half-way through the English epidemic. In this study, we use a mathematical model to reconcile early estimates of the rate of spread of infection, weekly data on the number of cases in the 2009 epidemic in England and the serological status of the English population at the end of the first pandemic wave. Our results reveal that if there are around 19 infections (i.e., seroconverters) for every reported case then the three data-sets are entirely consistent with each other. We go on to discuss when in the epidemic such a high ratio of seroconverters to cases of disease might have been detected, either through patterns in the case reports or through even earlier serological surveys.

Original publication

DOI

10.1371/journal.pone.0030223

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

England, Humans, Influenza, Human, Models, Theoretical, Pandemics